Improving Designer Glycan Production in Escherichia coli through Model-Guided Metabolic Engineering
نویسندگان
چکیده
Asparagine-linked (N -linked) glycosylation is the most common protein modification in eukaryotes, affecting over two-thirds of the proteome. Glycosylation is also critical to the pharmacokinetic activity and immunogenicity of many therapeutic proteins currently produced in complex eukaryotic hosts. The discovery of a protein glycosylation pathway in the pathogen Campylobacter jejuni and its subsequent transfer into laboratory strains of Escherichia coli has spurred great interest in glycoprotein production in prokaryotes. However, prokaryotic glycoprotein production has several drawbacks, including insufficient availability of non-native glycan precursors. To address this limitation, we used a constraint-based model of E. coli metabolism in combination with heuristic optimization to design gene knockout strains that overproduced glycan precursors. First, we incorporated reactions associated with C. jejuni glycan assembly into a genomescale model of E. coli metabolism. We then identified gene knockout strains that coupled optimal growth to glycan synthesis. Simulations suggested that these growth-coupled glycan overproducing strains had metabolic imbalances that rerouted flux toward glycan precursor synthesis. We then validated the model-identified knockout strains experimentally by measuring glycan expression using a flow cytometric-based assay involving fluorescent labeling of cell surface-displayed glycans. Overall, this study demonstrates the promising role that metabolic modeling can play in optimizing the performance of a next-generation microbial glycosylation platform.
منابع مشابه
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering.
With microbial production becoming the primary choice for natural product synthesis, increasing precursor and cofactor availability has become a chief hurdle for the generation of efficient production platforms. As such, we employed a stoichiometric-based model to identify combinations of gene knockouts for improving NADPH availability in Escherichia coli. Specifically, two different model obje...
متن کاملMetabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
1,4-Butanediol (BDO) is an important commodity chemical used to manufacture over 2.5 million tons annually of valuable polymers, and it is currently produced exclusively through feedstocks derived from oil and natural gas. Herein we report what are to our knowledge the first direct biocatalytic routes to BDO from renewable carbohydrate feedstocks, leading to a strain of Escherichia coli capable...
متن کاملImproving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering
Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes i...
متن کاملEffect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کاملRational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.
Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017